Irreducible

Representation Analysis
 Lecture 1

Mark Senn

PCG Intensive Summer School in Physical Crystallography
Abingdon, 20th of June 2018

Overview

- What is a representation?
- Irreducible representations of point groups
- Reducing a representation
- A physical interpretation of irreps
- The link between irreps and Eigen vectors
- Irrep degeneracy and dimensionality
- Irreps extended to space groups

Representation Theory

- Representation theory is a well established branch of mathematics and group theory.
- "The goal of group representation theory is to study groups via their actions on vector spaces." (Representation Theory of Finite Groups, Benjamin Steinberg).
- As solid state scientists, our motivation is slightly different. We wish to understand phase transitions (group-subgroup relationships) by studying representations of groups.
- In this context, the representation is the transformational properties of the collection of atomic displacements, site or magnetic orderings, which drive some phase transitions from a high symmetry structure to a lower symmetry structure.

Representations - some terminology

- The collection of atomic displacements, site or magnetic orderings that happen when some high symmetry structure undergoes a phase transition is often referred to as the "vector space".
- A representation of a group G is a structurepreserving (1 to 1) mapping of the elements in G for some finite-dimensional vector space.
- For a three dimensional (polar) vector (x, y, z) and a single symmetry operator $\left(\mathrm{g}_{1}\right)$ of a group G :
- $g_{1}(x, y, z)=(x, y, z) D\left(g_{1}\right)$
- In this case $\mathrm{D}\left(\mathrm{g}_{1}\right)$ is a 3×3 matrix and the complete set of $D\left(g_{1}\right), D\left(g_{2}\right) \ldots D\left(g_{n}\right)$ for all $n g_{1}, g_{2, . .} g_{n}$ symmetry elements is a representation of the group.

Constructing representations

- Consider the point group $\mathrm{C}_{2 \mathrm{v}}(m m 2)$. What is the representation of a polar vector (x, y, z)?
- $E(x, y, z)=(x, y, z)\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
$\left.\begin{array}{rl}\text { - } m_{x}(x, y, z) & =(x, y, z)\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \\ \text { - } m_{y}(x, y, z) & =(x, y, z)\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \\ 0 & 0 \\ 0 & 0\end{array} 1\right)$
- $2_{z}(x, y, z)=(x, y, z)\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)$

- For a polar vector with its tail at the origin, these are just the symmetry operators in matrix form!

Irreducible representations

- For certain choices of vector spaces (e.g. a specific pattern of atomic displacements), the representations have the special property that they are irreducible.
- $\mathrm{D}^{\prime}(\mathrm{g})=\mathrm{S}^{-1} \mathrm{D}(\mathrm{g}) \mathrm{S}$
- Irreducible in this context means that they cannot be expressed as a linear combination of any of the other irreducible representations of the group.
- Since this definition is somewhat cyclical, I will illustrate what irreducible means with several examples.

Irreducible representations of point groups

- Ultimately we are interested in studying solid state phase transitions, and hence irreps of space groups.
- However, we will start with something a bit more familiar, by playing around with character tables of point groups.
- Consider a 6-coordinate atom at the centre of a octahedron. For sake of argument this could be a TiO_{6} octahedron in the perovskite structure BaTiO_{3}.

m-3m Character tables

O_{h}	E	$8 \mathrm{C}_{3}$	$6 \mathrm{C}_{2}$	$6 \mathrm{C}_{4}$	$\left\lvert\, \begin{aligned} & 3 C_{2} \\ & =\left(C_{4}\right)^{2} \end{aligned}\right.$	i	$6 S_{4}$	$8 S_{6}$	3_{h}	$6{ }_{\text {d }}$	linear functions, rotations	quadratic functions
m-3m	1	$\begin{gathered} 8 \\ 3[111] \end{gathered}$	$\begin{gathered} 6 \\ 2[110] \end{gathered}$	$\begin{gathered} 6 \\ 4[100] \end{gathered}$	$\begin{gathered} 3 \\ 2[100] \end{gathered}$	-1	$\begin{gathered} 6 \\ 4[100] \end{gathered}$	$\begin{gathered} 8 \\ 3[111] \end{gathered}$	$\begin{gathered} 3 \\ \mathrm{~m}[100] \end{gathered}$	$\begin{gathered} 6 \\ m[110] \end{gathered}$		
$\mathrm{A}_{1 \mathrm{~g}}$	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	-	$x^{2}+y^{2}+z^{2}$
$\mathrm{A}_{2 \mathrm{~g}}$	+1	+1	-1	-1	+1	+1	-1	+1	+1	-1	-	-
E_{g}	+2	-1	0	0	+2	+2	0	-1	+2	0	-	$\begin{aligned} & \left(2 z^{2}-x^{2}-y^{2},\right. \\ & \left.x^{2}-y^{2}\right) \end{aligned}$
$\mathrm{T}_{1 \mathrm{~g}}$	+3	0	-1	+1	-1	+3	+1	0	-1	-1	$\left(\mathrm{R}_{x}, \mathrm{R}_{\mathrm{y}}, \mathrm{R}_{\mathrm{z}}\right)$	-
$\mathrm{T}_{2 \mathrm{~g}}$	+3	0	+1	-1	-1	+3	-1	0	-1	+1	-	($x z, y z, x y$)
A_{14}	+1	+1	+1	+1	+1	-1	-1	-1	-1	-1	-	-
$\mathrm{A}_{2 \mathrm{u}}$	+1	+1	-1	-1	+1	-1	+1	-1	-1	+1	-	-
E_{u}	+2	-1	0	0	+2	-2	0	+1	-2	0	-	-
$\mathrm{T}_{1 \mathrm{u}}$	+3	0	-1	+1	-1	-3	-1	0	+1	+1	($\mathrm{x}, \mathrm{y}, \mathrm{z}$)	
$\mathrm{T}_{2 \mathrm{u}}$	+3	0	+1	-1	-1	-3	+1	0	+1	-1	-	-

Characters of irreps

- In this case, the representation of the vector (x, y, z) in point group $m-3 m$ is already irreducible: $\mathrm{T}_{1 u}$.
- The T indicates that it is triply degenerate - a displacement along x would be equivalent to one along y or z in $m-3 m$.
- The u indicates that it is antisymmetric w.r.t. inversion the vector is polar after all!
- The character table gives the characters(!) of the irreps, which are the sum of the diagonal component of the irrep matrixes.
- $E(x, y, z)=(x, y, z)\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ sum of diagonal is 3 , hence triply degenerate.

Characters of irreps

- Considering a mirror plane perpendicular to x, $\mathrm{m}[100]$.
- $(x, y, z)\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)=(-x, y, z)$
- The Character is $1+1-1=1$
- Consider a 3 fold about [111], 3[111]:
- $(x, y, z)\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)=(z, x, y)$
- The Character is $0+0+0=0$

m-3m Character tables

O_{h}	E	$8 \mathrm{C}_{3}$	$6 \mathrm{C}_{2}$	$6 \mathrm{C}_{4}$	$\left\lvert\, \begin{aligned} & 3 C_{2} \\ & =\left(C_{4}\right)^{2} \end{aligned}\right.$	i	$6 S_{4}$	$8 S_{6}$	3_{h}	$6{ }_{\text {d }}$	linear functions, rotations	quadratic functions
m-3m	1	$\begin{gathered} 8 \\ 3[111] \end{gathered}$	$\begin{gathered} 6 \\ 2[110] \end{gathered}$	$\begin{gathered} 6 \\ 4[100] \end{gathered}$	$\begin{gathered} 3 \\ 2[100] \end{gathered}$	-1	$\begin{gathered} 6- \\ 4[100] \end{gathered}$	$\begin{gathered} 8- \\ 3[111] \end{gathered}$	$\begin{gathered} 3 \\ \mathrm{~m}[100] \end{gathered}$	$\begin{gathered} 6 \\ m[110] \end{gathered}$		
$\mathrm{A}_{1 \mathrm{~g}}$	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	-	$x^{2}+y^{2}+z^{2}$
$\mathrm{A}_{2 \mathrm{~g}}$	+1	+1	-1	-1	+1	+1	-1	+1	+1	-1	-	-
E_{g}	+2	-1	0	0	+2	+2	0	-1	+2	0	-	$\begin{aligned} & \left(2 z^{2}-x^{2}-y^{2},\right. \\ & \left.x^{2}-y^{2}\right) \end{aligned}$
$\mathrm{T}_{1 \mathrm{~g}}$	+3	0	-1	+1	-1	+3	+1	0	-1	-1	$\left(\mathrm{R}_{x}, \mathrm{R}_{\mathrm{y}}, \mathrm{R}_{\mathrm{z}}\right)$	-
$\mathrm{T}_{2 \mathrm{~g}}$	+3	0	+1	-1	-1	+3	-1	0	-1	+1	-	($x z, y z, x y$)
A_{14}	+1	+1	+1	+1	+1	-1	-1	-1	-1	-1	-	-
$\mathrm{A}_{2 \mathrm{u}}$	+1	+1	-1	-1	+1	-1	+1	-1	-1	+1	-	-
E_{u}	+2	-1	0	0	+2	-2	0	+1	-2	0	-	-
$\mathrm{T}_{1 \mathrm{u}}$	+3	0	-1	+1	-1	-3	-1	0	+1	+1	($\mathrm{x}, \mathrm{y}, \mathrm{z}$)	
$\mathrm{T}_{2 \mathrm{u}}$	+3	0	+1	-1	-1	-3	+1	0	+1	-1	-	-

Other irreps of point group m-3m

- Let us chose a different vector space that has the following transformational property:
- $\left(x_{2}, 0,0\right) \equiv\left(0, y_{2}, 0\right) \equiv\left(0,0, z_{2}\right) \equiv\left(-x_{2}, 0,0\right) \equiv\left(0,-y_{2}, 0\right) \equiv\left(0,0,-z_{2}\right)$.
- e.g. what I am describing is a breathing mode of the octahedron.
- This is now a scalar and not a vector and requires just a single value to describe its magnitude.
- As this vector space is invariant under all symmetry elements of $m-3 m$, the associated representation is now the totally symmetry irrep $\mathrm{A}_{1 \mathrm{~g}}$.
- Any 1 dimensional rep will always be an irrep.

Reducing representations

- In the two previous examples I chose vector spaces deliberately, such that the associated representations were irreducible.
- However, I could have chosen the lowest symmetry pattern of bond stretches that I could imagine.

Reps of the vector space

$\cdot \mathrm{m}_{\mathrm{x}}\left(\mathrm{z}_{1}, \mathrm{x}_{2}, \mathrm{y}_{3}, \mathrm{x}_{4}, \mathrm{y}_{5}, \mathrm{z}_{6}\right)=\left(\begin{array}{ccc}1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1\end{array}\right)\left(\mathrm{z}_{1},-\mathrm{x}_{4}, \mathrm{y}_{3},-\mathrm{x}_{2}, \mathrm{y}_{5}, \mathrm{z}_{6}\right)$
$\cdot \mathrm{m}_{\mathrm{z}}\left(\mathrm{z}_{1}, \mathrm{x}_{2}, \mathrm{y}_{3}, \mathrm{x}_{4}, \mathrm{y}_{5}, \mathrm{z}_{6}\right)=\left(\begin{array}{ccc}0 & \cdots & -1 \\ \vdots & \ddots & \vdots \\ -1 & \cdots & 0\end{array}\right)\left(-\mathrm{z}_{6}, \mathrm{x}_{2}, \mathrm{y}_{3}, \mathrm{x}_{4}, \mathrm{y}_{5},-\mathrm{z}_{1}\right)$

The vector space is now six dimensional

Now the rep is a 6×6 matrix

Matrix reps now have off-diagonal elements. A transformation of kind $\mathrm{D}^{\prime}(\mathrm{g})=\mathrm{S}^{-1} \mathrm{D}(\mathrm{g}) \mathrm{S}$ is required to reduce them.

This looks like a basis transformation

Reducing representations

o_{h}	E	$8 \mathrm{C}_{3}$	$6 \mathrm{C}_{2}$	$6 \mathrm{C}_{4}$	$3 C_{2}=\left(C_{4}\right)^{2}$	i	65_{4}	$8 S_{6}$	3 n	6 d
m-3m	1	3[111]	2[110]	4[100]	2[100]	-1	4[100]	3[111]	m[100]	$\mathrm{m}[110]$
$\mathrm{A}_{2 \mathrm{~g}}$	+1	+1	-1	-1	+1	+1	-1	+1	+1	-1
Eg_{g}	+2	-1	0	0	+2	+2	0	-1	+2	0
$\mathrm{T}_{1 \mathrm{~g}}$	+3	0	-1	+1	-1	+3	+1	0	-1	-1
$\mathrm{T}_{2 \mathrm{~g}}$	+3	0	+1	-1	-1	+3	-1	0	-1	+1
$\mathrm{A}_{1 \mathrm{u}}$	+1	+1	+1	+1	+1	-1	-1	-1	-1	-1
$\mathrm{A}_{2 \mathrm{u}}$	+1	+1	-1	-1	+1	-1	+1	-1	-1	+1
E_{u}	+2	-1	0	0	+2	-2	0	+1	-2	0
T_{14}	+3	0	-1	+1	-1	-3	-1	0	+1	+1
T_{24}	+3	0	+1	-1	-1	-3	+1	0	+1	-1
$\Gamma_{\text {Bonds }}$	6	0	0	2	2	0	0	0	4	2

Reducing representations

(Basis vectors of the vector space)
The representation was 6 dimensional, the sum of the irrep dimensionality (degeneracy) is 6 .

Irreducibility

- Deriving the irreducible representations of $m-3 m$ (or indeed any point group with a significant number of operators) is non trivial.
- However it is easy to show that irreps are irreducible by showing that the dot product of the characters of the irreps with each other is " 0 ".

O_{h}	E	${ }_{8} \mathrm{C}_{3}$	$6 \mathrm{C}_{2}$	$\underline{6} \mathrm{C}_{4}$	$\begin{aligned} & \begin{array}{l} 3 C_{2} \\ =\left(C_{4}\right)^{2} \end{array} \end{aligned}$	i	65_{4}	$8^{8} S_{6}$	$\underline{3}_{h}$	$\underline{6}$ d	linear	quadratic
m-3m	1	$\begin{gathered} 8 \\ 3[111] \end{gathered}$	$\begin{gathered} 6 \\ 2[110] \end{gathered}$	$\begin{gathered} 6 \\ 4[100] \end{gathered}$	$\begin{gathered} 3 \\ 2[100] \end{gathered}$	-1	$\begin{gathered} 6 \\ 4[100] \end{gathered}$	$\begin{gathered} 8 \\ 3[111] \end{gathered}$	$\begin{gathered} 3 \\ \mathrm{~m}[100] \end{gathered}$	$\begin{gathered} 6 \\ m[110] \end{gathered}$	rotations	functions
$\mathrm{A}_{1 \mathrm{~g}}$	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	-	$x^{2}+y^{2}+z^{2}$
E_{g}	+2	-1	0	0	+2	+2	0	-1	+2	0	-	$\begin{aligned} & \left(2 z^{2}-x^{2}-y^{2},\right. \\ & \left.x^{2}-y^{2}\right) \end{aligned}$
$\mathrm{T}_{1 \mathrm{u}}$	+3	0	-1	+1	-1	-3	-1	0	+1	+1	$\mathrm{T}_{1 \mathrm{u}}$	+3

Careful, in doing this you need to consider the number of each symmetry operator when multiplying the individual elements together.

Analogy with molecular vibrations

- Consider how one might calculate the stretching frequencies of a ABO_{6} molecule - Construct a FCM .

	O1	02	03	04	05	06
O1	1.4	0.1	0.1	0.1	0.1	1
O2	0.1	1.4	0.1	1	0.1	0.1
O3	0.1	0.1	1.4	0.1	1	0.1
O4	0.1	1	0.1	1.4	0.1	0.1
O5	0.1	0.1	1	0.1	1.4	0.1
O6	1	0.1	0.1	0.1	0.1	1.4

- Local coordinate system +ve for motion towards B and -ve for motion away from B.

Diagonalizing the FCM

Eigen Vectors:	E1	E2	E3	E4	E5	E6
O1	-0.408	-0.707	-0.056	-0.577	0.391	0.21
$\mathbf{O 2}$	-0.408	0	-0.492	0.289	0.173	0.259
$\mathbf{O 3}$	-0.408	0	0.504	0.289	-0.563	0.624
$\mathbf{O 4}$	-0.408	0	0.492	0.289	0.173	-0.259
$\mathbf{O 5}$	-0.408	0	-0.504	0.289	-0.563	-0.624
$\mathbf{O 6}$	-0.408	0.707	0.056	-0.577	0.391	-0.21

Eigen vectors: Related to the transformational matrix (\mathbf{M}) required to bring the FCM into diagonal form, via similarity transformation \mathbf{M}^{-1} FCM M

Eigen values: The diagonal elements of the diagonal matrix.

You can have a play around with this using an online matrix calculator (http://www.bluebit.gr/matrix-calculator/) to take some of the pain out of inverting 3×3 matrices.

Visualising Eigen Vectors

	E1	E2	E3	E4	E5
E6					
O1	-0.408	-0.707	-0.056	-0.577	0.391
O2	-0.408	0	-0.492	0.289	0.173
O3	-0.408	0	0.504	0.289	-0.563
O4	-0.408	0	0.492	0.289	0.173
O5	-0.408	0	-0.504	0.289	-0.259
O6	-0.408	0.707	0.056	-0.577	0.391

Why does this work?

- When assigning the forces to our BO_{6} molecule we respected the symmetry of $m-3 m$.
- We hence encoded the symmetry of the system in the FCM.
- It is worth reflecting that, in effect, symmetry predetermines the Eigen vectors of this system (the allowed vibration modes).
- The basis change involved in going from FCM to Eigen vectors is analogous in many ways to the "basis change" involved in going from representations to irreps.
- Reducing reps using the characters of irreps is considerably less work than diagonalising a FCM - especially for more complex systems!

Irrep degeneracy

- You may notice that I glossed over the fact earlier that not all of the Eigen vectors degenerating in energy correspond nicely to the triply degenerate anti-symmetric and doubly degenerate symmetric stretches that we are used to visualising:

	E2	E3	E6
O1	-0.707	-0.056	0.21
O2	0	-0.492	0.259
O3	0	0.504	0.624
O4	0	0.492	-0.259
O5	0	-0.504	-0.624
O6	0.707	0.056	-0.21

E2: $\mathrm{T}_{1 \mathrm{u}}$

E3: $\mathrm{T}_{1 \mathrm{u}}$

E6: $\mathrm{T}_{1 \mathrm{u}}$

Irrep degeneracy $-\mathrm{E}_{\mathrm{g}}$

Credit: Goodwin Group

Irrep degeneracy

- Occurs because the associated degeneracy leaves an additional ambiguity with respect to the basis vectors that are used.
- Irrep analysis uniquely defines the basis vectors of your vector space up to the degeneracy/dimensionality of the irreps.
- Additional choices have been made in tabulating irreps such that the resulting basis vectors are compatible with Cartesian axes and/or are physically intuitive.
- The FCM approach does not know anything about our preferences.
- In the harmonic approximation, a vibration of character corresponding to any of these triply degenerate eigen vectors / irreps or any linear combination thereof is strictly equivalent in energy.

Irreps of space groups

- We will now consider how these ideas extend to space groups and additional complications that arise.
- For space groups we have to consider not only the additional symmetry elements such as glide and screw axes, but also lattice translational symmetry.
- Since a lattice is in principle infinite, we might expect an infinite number of irreps!
- Thankfully, symmetry in reciprocal space helps us reduce and classify these into a manageable form.

Propagation vectors

- Propagation vector or crystal momentum k :

$k=1 / 2$

$k=1 / 4$

$k=1 / 6$

Space group irrep tabulations

- As for phonon Eigen vector calculations, the irreps concerned with vector spaces with different propagation vectors can be calculated independent of each other.
- There are thankfully tabulations that have been made by various authors.
- These have been made predominantly for the high symmetry point of the BZ, but more recent tabulations of low symmetry lines and points are also available online.
- We will use exclusively the "2011 version" of the irrep matrices calculated by Stokes, Campbell and Cordes (Acta Cryst. (2013). A69, 388-395), as implemented in the current version of ISODISPLACE.

Irreps of Pm-3m at 「

- We will start by extending our point group example of a BO_{6} molecule to a ABO_{3} perovskite with setting $A(0,0,0), B(1 / 2,1 / 2,1 / 2), O(1 / 2,1 / 2,0)$.
- Consider again a vector space corresponding to an off-centre displacement of B.
- This corresponds to irrep $\Gamma_{4}{ }^{-}$in Miller and Love notation.
- The letter always denotes $k . k=\left(\begin{array}{lll}0 & 0\end{array}\right)$ always for Γ
- "-" denotes antisymmetric nature w.r.t the inversion centre at $(0,0,0)$.

Irrep dimensionality

- Miller-Love notation contains extra information on the propagation vector, but does not describe the dimensionality / degeneracy of irreps, as is done with Mulliken symbols.
- To counter this, often a string of letters of a length equal to the dimensionality is given after the irrep label.
- As $\Gamma_{4}{ }^{-}$is three dimensional, three letters are needed.
- $\Gamma_{4}-(\mathrm{a}, \mathrm{b}, \mathrm{c})$ corresponds to the most general (lowest symmetry) displacement of the B site along x, y and z.
- Higher symmetry $\Gamma_{4}^{-}(a, a, a), \Gamma_{4}^{-}(a, 0,0)$ and so on are possible.
- Note: since symmetry imposes no constraint on the basis vectors of $\Gamma_{4}{ }^{-}$, the irrep matrices need not necessarily be chosen such that they have a nice correspondence with a high symmetry lattice direction. However, programs like ISODISRORT normally endeavor to do so.

Irreps of Pm-3m at 「

IR GM4-Symmetry operator

Star of k: $(0,0,0)$,	
(1)	(2)
1:(x,y,z)	$3(1,0,0 / 0,1,0 / 0,0,1)$
2[100]:($x,-y,-z$)	-1 (1, 0, 0/0, -1, $0 / 0,0,-1$)
2[010]:(-x,y,-z)	-1 (-1, 0, 0/0, 1, $0 / 0,0,-1$)
2[001]:(-x,-y,z)	-1 (-1, 0, 0/0, -1, 0/0, 0, 1)
3[111]:(z,x,y)	$0(0,0,1 / 1,0,0 / 0,1,0)$
3[-1-1-1]: $(\mathrm{y}, \mathrm{z}, \mathrm{x})$	$0(0,1,0 / 0,0,1 / 1,0,0)$
3[-111]: $(-y, z,-x)$	0 ($0,-1,0 / 0,0,1 /-1,0,0)$
3[1-1-1]:(-z,-x,y)	0 ($0,0,-1 /-1,0,0 / 0,1,0)$
3[1-11]:(-y, -z, x)	0 ($0,-1,0 / 0,0,-1 / 1,0,0)$
3[-11-1]:(z,-x,-y)	0 (0, , , 1/-1, 0, 0/0,-1, 0)
3[11-1]: $(\mathrm{y},-\mathrm{z},-\mathrm{x})$	$0(0,1,0 / 0,0,-1 /-1,0,0)$
3[-1-11]:(-z,x,-y)	0 (0, 0, -1/1, , , $/ 0,-1,0)$
4[100]: $(x,-z, y)$	$1(1,0,0 / 0,0,-1 / 0,1,0)$
4[-100]: $(x, z,-y)$	$1(1,0,0 / 0,0,1 / 0,-1,0)$
4[010]:(z,y,-x)	$1(0,0,1 / 0,1,0 /-1,0,0)$

Character
Irrep matrices

$$
\begin{array}{lll}
-3[11-1]:(-y, z, x) & 0 & (0,-1,0 / 0,0,1 / 1,0,0) \\
-3[-1-11]:(z,-x, y) & 0 & (0,0,1 /-1,0,0 / 0,1,0) \\
-4[100]:(-x, z,-y) & -1 & (-1,0,0 / 0,0,1 / 0,-1,0) \\
-4[-100]:(-x,-z, y) & -1 & (-1,0,0 / 0,0,-1 / 0,1,0) \\
-4[010]:(-z,-y, x) & -1 & (0,0,-1 / 0,-1,0 / 1,0,0) \\
-4[0-10]:(z,-y,-x) & -1 & (0,0,1 / 0,-1,0 /-1,0,0) \\
-4[001]:(y,-x,-z) & -1 & (0,1,0 /-1,0,0 / 0,0,-1) \\
-4[00-1]:(-y, x,-z) & -1 & (0,-1,0 / 1,0,0 / 0,0,-1) \\
-2[110]:(-y,-x, z) & 1 & (0,-1,0 /-1,0,0 / 0,0,1) \\
-2[-110]:(y, x, z) & 1 & (0,1,0 / 1,0,0 / 0,0,1) \\
-2[101]:(-z, y,-x) & 1 & (0,0,-1 / 0,1,0 /-1,0,0) \\
-2[-101]:(z, y, x) & 1 & (0,0,1 / 0,1,0 / 1,0,0) \\
-2[011]:(x,-z,--y) & 1 & (1,0,0 / 0,0,-1 / 0,-1,0) \\
-2[0-11]:(x, z, y) & 1 & (1,0,0 / 0,0,1 / 0,1,0) \\
\hline 1:(x+1, y, z) & 3 & (1,0,0 / 0,1,0 / 0,0,1) \\
1:(x, y+1, z) & 3 & (1,0,0 / 0,1,0 / 0,0,1) \\
1:(x, y, z+1) & 3 & (1,0,0 / 0,1,0 / 0,0,1) \\
\hline
\end{array}
$$

ISODISTORT: http://stokes.byu.edu/iso/isodistort.php

「-point irreps of Pm-3m

- The output of ISODISTORT gives the full list of symmetry operators rather than grouping these together according to operator type.
- The output of ISODISTORT includes the full irreducible representation matrices rather than just the characters.
- There are three additional entries such as 1:($x, y, z+1$) 3 ($1,0,0 / 0,1,0 / 0,0,1$) that deal with the lattice translational symmetry.
- Note that in space groups with translational symmetry elements the extension from point groups, even for irreps at the 「-point, is somewhat more complicated.

End of Lecture 1

